Characterizing root response phenotypes by neural network analysis

نویسندگان

  • Sarah V. Hatzig
  • Sarah Schiessl
  • Andreas Stahl
  • Rod J. Snowdon
چکیده

Roots play an immediate role as the interface for water acquisition. To improve sustainability in low-water environments, breeders of major crops must therefore pay closer attention to advantageous root phenotypes; however, the complexity of root architecture in response to stress can be difficult to quantify. Here, the Sholl method, an established technique from neurobiology used for the characterization of neural network anatomy, was adapted to more adequately describe root responses to osmotic stress. This method was used to investigate the influence of in vitro osmotic stress on early root architecture and distribution in drought-resistant and -susceptible genotypes of winter oilseed rape. Interactive changes in root architecture can be easily captured by individual intersection profiles generated by Sholl analysis. Validation using manual measurements confirmed that the number of lateral roots decreased, while mean lateral root length was enhanced, under osmotic stress conditions. Both genotypes reacted to osmotic stress with a shift in their intersection patterns measured with Sholl analysis. Changes in interactive root architecture and distribution under stress were more pronounced in the drought-resistant genotype, indicating that these changes may contribute to drought resistance under mild osmotic stress conditions. The Sholl methodology is presented as a promising tool for selection of cultivars with advantageous root phenotypes under osmotic stress conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge

Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

A neuro-data envelopment analysis approach for optimization of uncorrelated multiple response problems with smaller the better type controllable factors

In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while t...

متن کامل

Response surface methodology and artificial neural network modeling of reactive red 33 decolorization by O3/UV in a bubble column reactor

In this work, response surface methodology (RSM) and artificial neural network (ANN) were used to predict the decolorization efficiency of Reactive Red 33 (RR 33) by applying the O3/UV process in a bubble column reactor. The effects of four independent variables including time (20-60 min), superficial gas velocity (0.06-0.18 cm/s), initial concentration of dye (50-150 ppm), and pH (3-11) were i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015